
Priority Queues
and Heaps

1

Lecture 9, Week 10
July 18, 2013
CSC148H1S

Velian Pandeliev

1Monday, July 22, 2013



Priority Queue

14

We are familiar with queues and stacks as ADTs. In a 
queue, the first element in is the first element out. In 
a stack, the last element in is the first element out.

A priority queue is an ADT in which every 
element has a priority associated with it.

In a priority queue, regardless of the order of 
insertion, the element with the highest priority is 
retrieved first.

Applications: barbecues, emergency waiting room, 
network management, pathfinding...

14Monday, July 22, 2013



Priority Queue Operations

15

Priority queues should support at least the following 
two operations:

insert: add a new element to the PQ

extract_max: return the element with highest 
priority

What are some ways to implement a PQ?

insert extract_max

unsorted list O(1) O(n)

sorted list O(n) O(1)

BST O(log n) to O(n) O(log n) to O(n)

15Monday, July 22, 2013



Heaps

16

We'd like to create a data structure that makes 
implementing a priority queue more efficient.
A heap is a binary tree that adheres to the 
following two properties:
- the completeness property: a heap is a complete 
binary tree. Every level except the last one is full, and 
the last one is filled from left to right.
- the heap property: In a min-heap, every node is 
smaller than its two children. In a max-heap, every 
node is larger than its two children. 
It follows that in a min-heap, the smallest node is the 
root, and in a max-heap, the largest node is the root.

16Monday, July 22, 2013



Heaps

17

k

< k > k

BSTk

> k > k

Min-heap

k

< k < k

Max-heap

17Monday, July 22, 2013



Priority Queues as Heaps

18

A priority queue can be implemented as either a min-
heap or a max-heap, depending on the problem.

For instance, if priority reflects importance, then 
you'd like the most important element first, so you'd 
use a max-heap.

However, if priority reflects something like time left, 
you'd want the element with the least time, so you'd 
use a min-heap.

18Monday, July 22, 2013



Implementing Heaps

19

Heaps are binary trees.

They could be implemented as linked nodes, like 
BSTs.

They could also be implemented as a single list.

19Monday, July 22, 2013



Heap as a List

20

To implement a binary tree as a list:
- the first element (index 0) is the root
- for every element at index i:

- its left child is at index 2*i + 1
- its right child is at index 2*i + 2

1 2 3 17 19 36 7 25 100

0 1 2 3 4 5 6 7 8

20Monday, July 22, 2013



Parents and children

21

Q: How do we refer to nodes in the heap if it's 
implemented as a list?
A: We use a specific index in the list.
Q: Where is the root of the heap?
A: At index 0.
Q: How do we find a node's left child if the list only 
stores integers and not Node objects with links?
A: We find it by calculating the index where it should 
be stored. If our element is at index i, its left child is at 
2*i + 1
Q: How will we know the node has no left child?
A: If the index is greater than or equal to the length 
of the list.

21Monday, July 22, 2013



Heap Insertion

22

Since heaps are complete, there is only one valid place 
to insert into a heap: the next empty leaf spot.

17

9 6

3 1

So, by necessity we insert our new 
element (e.g. 8) there.

8

This has preserved the 
completeness property of our 
heap, but not the heap property.

To fix this, we will swap the new value with that of its parent 
until the heap property is no longer violated.
This is called percolating up the heap.
Question: what's the time complexity of insertion?

8

6

?

?

22Monday, July 22, 2013



Heap Deletion

23

The only thing we ever delete from a heap is the root.

17

9 6

3 1

However, the heap needs to 
"shrink" from the last leaf node.

So, we will swap the root with the 
last leaf and delete the last leaf.8

Now we have a complete tree, but it's not a heap anymore.

The root is violating the heap property, so we should 
percolate it down by swapping it with the greater child at 
every step.

8

617

6

Why the greater child? And how fast is this?

9

6

23Monday, July 22, 2013



Priority Queue Efficiency

24

Priority queues should support at least the following 
two operations:

insert: add a new element to the PQ

extract_max: return the element with highest 
priority

insert extract_max

unsorted list O(1) O(n)

sorted list O(n) O(1)

BST O(log n) to O(n) O(log n) to O(n)

heap O(log n) O(log n)

24Monday, July 22, 2013



Heapify

25

If we have a 1-D list of integers and we want to turn 
it into a heap, we have to make it conform to the 
heap property: every node should be greater than its 
two children (for a max heap).

The second half of the list representation of a heap 
contains leaves, which already conform to the 
property (by not having children).

Starting at the last internal node in the list, we will 
make sure each element conforms as well by 
percolating down. Finally, when we reach the node at 
index 0, our entire list will be a valid max-heap.

We call this operation heapifying a list.

25Monday, July 22, 2013



26

1 2 3 17 19 36 7 25 99

1 2 3 99 19 36 7 25 17

1 2 36 99 19 3 7 25 17

26Monday, July 22, 2013



3

27

1 99 36 25 19 3 7 2 17

99 25 36 17 19 3 7 2 1

25 36

17 19 7

2 1

99

The grey part of the list are 
max-heaps at any point of 

the execution.

27Monday, July 22, 2013


