
CSC148 Ramp-Up

January 2011
Velian Pandeliev

(based on notes by
Jonathan Taylor & Noah Lockwood)

1

1Sunday, January 15, 2012

Overview

In six hours, we'll cover the background required for
CSC148

This session is for students with programming
experience who haven't necessarily taken the
prerequisite, CSC108

Format: 6 modules. First I'll introduce each concept,
then you'll do an exercise using the concepts.

Please ask questions!

2

2Sunday, January 15, 2012

Python Basics
Comments start with a #:
#This is a comment and will not run

Dynamically typed
x = 3 #CORRECT
int x = 3 #INCORRECT
x = "monkey" #ALSO CORRECT

Indentation is significant
x = 3
 y = 3 # INCORRECT: no indent needed

No extra code needed to start
print "Hello World!"

No semicolons at the ends of lines!

3

3Sunday, January 15, 2012

Running Python Programs
Python programs are stored in .py files.

From the command line:

#user@redwolf:~$ python helloworld.py
Hello World!

Using WING:

4

4Sunday, January 15, 2012

Python Reference & Resources
Official Python documentation:

http://docs.python.org

The dir function shows the known methods for a
given type:

>>> dir(str)

The help function provides details:

>>> help(str)

5

5Sunday, January 15, 2012

Variables
Integers (int):
>>> apples = 4
>>> apples / 3
1

Floating-point for decimal numbers (float):
>>> pi = 3.14
>>> radius = 5.0
>>> pi * (radius ** 2)
78.5

Boolean (bool) for True and False:
>>> val = True
>>> not val # standard Boolean ops: not, and, or
False
>>> 4 > 3 # bool returned by comparison ops
True

6

6Sunday, January 15, 2012

Strings
>>> msg = "Welcome!"

Getting a single character in a string:
>>> msg[3] # remember, indices start at 0
'c'

Substrings using [:] ("slicing") notation :
>>> msg[4:7] # characters 4 to 7 - 1
'ome'
>>> msg[3:] # characters 3 to end of string
'come!'

Obtaining the length of the string with built-in len function:
>>> len(msg)
8

Strings can be added together ("concatenated") to form new ones:
>>> msg2 = "Come in!"
>>> msg + " " + msg2
"Welcome! Come in!"

7

7Sunday, January 15, 2012

Strings 2
Operations on string variables using methods:
>>> # str.find returns first index of given substring
>>> msg.find('e')
1
>>> msg[1]
'e'
>>> # str.lower returns a lowercase copy of string
>>> msg.lower()
'welcome'

Strings are immutable, meaning they can't be changed once created:
>>> msg[0] = 'w'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item
assignment

Empty strings are OK:
>>> msg = ''

8

8Sunday, January 15, 2012

Input/Output
Reading keyboard input: raw_input

>>> name = raw_input()
Velian
>>> name
'Velian'

Generating Output: print

>>> print "Hello " + name
Hello Velian

>>> print "Hello %s %s" % ("Chuck", "Norris")
Hello Chuck Norris

>>> print "Name: %s Age: %d Grade %.2f" %
 ("Bob", 20, 83.33333)
Name: Bob Age: 20 Grade 83.33

9

9Sunday, January 15, 2012

Conversions
Use the functions int(), float(), str():

>>> float('3.14')
3.14000000001

>>> int('3')
3

>>> float(3)
3.0

>>> str(3.14)
'3.14'

But don't try to convert silly things:

>>> int("Hello world")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10:
'Hello World!'

10

10Sunday, January 15, 2012

Exercise 1: Temperature
Write a program that:

- prompts the user for degrees in Fahrenheit

- converts the number into Celsius

- prints out the number in Celsius

The formula for conversion is:

C = (F - 32) / 1.8

11

11Sunday, January 15, 2012

Exercise 1 Solution
Give a prompt
print "Input temperature in fahrenheit:"

Read in the input.
fahrenheit = raw_input("--> ")

Convert to floating point.
fahrenheit = float(fahrenheit)

Calculate the degrees in celsius.
celsius = fahrenheit - 32
celsius = celsius / 1.8

Display answer.
print "The temperature in %.2f degrees celsius." %
(celsius)

12

12Sunday, January 15, 2012

List Basics

13

Lists are a very important data structure in Python

They're created with comma-separated elements in []:

>>> colours = ['red', 'green', 'blue']
>>> empty = [] # allowed
>>> mixed = ['red', 3, 5.6]

Lists can be indexed:

>>> first_colour = colours[0]
>>> first_colour
'red'
>>> colours[0:2]
['red', 'green']

Lists can contain anything, even other lists:

>>> nested = [1, 2, 3, colours]
>>> nested
[1, 2, 3, ['red', 'green', 'blue']]

13Sunday, January 15, 2012

More on Lists

14

Lists are mutable:

>>> colours[2] = 'yellow'
>>> colours
['red', 'green', 'yellow']
>>> colours.append('blue')
['red', 'green', 'yellow', 'blue']

>>> nums = [4, 2, 1, 3]
>>> nums.sort()
>>> nums
[1, 2, 3, 4]

Be careful! Multiple variables may be referring to the same data structure
("aliasing"):

>>> orig_list = [0, 1, 2]
>>> copy_list = orig_list
>>> copy_list.append(99)
>>> orig_list
[0, 1, 2, 99]

14Sunday, January 15, 2012

For Loops

15

Used to repeat something on each element of a list

>>> colours = ['red', 'green', 'blue']
>>> >>> for c in colours:
... print c
...
red
green
blue

You can loop through list indices using the range() function
(range(x) returns a list [0, 1, ..., x-1])

>>> range(len(colours))
[0, 1, 2]
>>> for i in range(len(colours)):
... print "Colour %d is: %s" % (i, colours[i])
...
Colour 0 is: red
Colour 1 is: green
Colour 2 is: blue

15Sunday, January 15, 2012

More list processing

16

Use enumerate() to get the index and element together

>>> names = ['Jon Taylor', 'Jill Hearst']
>>> for (n, name) in enumerate(names):
... print "%d. %s" % (n+1, name)
...
1. Jon Taylor
2. Jill Hearst

You can generate a new list with list comprehensions:

>>> upper = [name.upper() for name in names]
>>> upper
['JON TAYLOR', 'JILL HEARST']

List comprehensions are generally awesome.

16Sunday, January 15, 2012

Exercise 2: Times Table

17

Compute a times table for numbers 0-9 as a list of
lists.

For example, for numbers 0 to 2, this would be:

[[0, 0, 0], [0, 1, 2], [0, 2, 4]]

17Sunday, January 15, 2012

Exercise 2 Solution
times_table = []
n = 10

for i in range(n):
 # Compute a row
 row = []
 for j in range(n):

 row.append(i * j)
add row to timestable
times_table.append(row)

And here's a solution with list comprehensions:

[[i*j for i in range(n)] for j in range(n)]

But resist the temptation to overuse them.

18

18Sunday, January 15, 2012

If Statements

19

If statements allow you to make decisions based on whether a certain
condition is True or False:

if amount > balance:
 print "Not enough money!"

elif amount == balance:
 print "You must keep a positive balance!"

else:
 amount = amount - balance
 print "Transaction OK"

elif stands for 'else if', elif and else are both optional:

if amount >= balance:
 print "Transaction NOT OK"

else:
 amount = amount - balance
 print "Transaction OK"

19Sunday, January 15, 2012

Functions

20

Remove duplication of code and to encapsulate commonly used sequences of
commands:

def celsius_to_fahrenheit(degrees):
 celsius = float(degrees)
 fahrenheit = (1.8 * celsius) + 32
 return fahrenheit

f = celsius_to_fahrenheit(0)

def print_list(list):
 if len(list) == 0:
 print "List is empty!"
 else:
 print "List contents:"
 for x in list:
 print x

20Sunday, January 15, 2012

Exercise 3: Functions

21

Two words are a reverse pair if each word is the
reverse of the other.

- Write a function is_reverse_pair(s1, s2)
that returns True if and only if s1 and s2 are a
reverse pair.

- Then, write a function print_reverse_pairs
(wordlist) that accepts a list of strings and
prints out all of the reverse pairs in the list.

21Sunday, January 15, 2012

Exercise 3 Solution
def is_reverse_pair(s1, s2):

 if len(s1) != len(s2):
 return False
 for i in range(len(s1)):
 if s1[i] != s2[len(s2) - 1 - i]:
 return False
 return True

Or, using slicing notation:

def is_reverse_pair(s1, s2):
 return s1[::-1] == s2

def print_reverse_pairs(wordlist):
 for s1 in wordlist:
 for s2 in wordlist:
 if is_reverse_pair(s1, s2):
 print ‘%s, %s’ % (s1, s2)

22

22Sunday, January 15, 2012

Tuples

23

A faster, simpler way to represent a collection of objects. Like lists, but
immutable (meaning what?)

>>> seq = (4, 'f', 'foo', 2)
>>> seq
(4, 'f', 'foo', 2)

Tuples can be converted to lists:

>>> l = list(seq)

Caveat: Tricky to define a one element sequence:

>>> seq = (1)
>>> seq
1
>>> seq = (1,)
>>> seq
(1,)

23Sunday, January 15, 2012

Dictionaries

24

Dictionaries associate elements with keys rather than indices. They contain
key-value pairs, defined as follows:

>>> scores = {'Alice': 80, 'Bob': 70, 'Eve' : 80 }
>>> scores['Bob']
70
>>> scores['Dave'] = 90 # adds pair to dictionary
>>> scores
{‘Dave’: 90, ‘Bob’: 70, ‘Alice’: 80, ‘Eve’: 80}

>>> scores.keys() # list of keys
['Dave, 'Bob', 'Alice', 'Eve']

>>> scores.items() # list of pairs
[('Dave', 90), ('Bob', 70), ('Alice', 80), ('Eve',
80)]

Note: Keys in dictionaries have to be unique, and must be immutable.

Note 2: Dictionaries do NOT maintain order of elements.

24Sunday, January 15, 2012

Exercise 4: Dictionaries

25

- Write a function print_record that takes a dictionary as input. Keys are
student numbers (int), values are names (str). The function should print out
all records, nicely formatted.

>>> record = {1234 : ‘Tony Stark’, 1138 : ‘Steve
Rogers’}
>>> print_record(record)
Name: Tony Stark
Student #: 1234

Name: Steve Rogers
Student #: 1138

- Write a function count_occurrences that takes a list of strings as input, and
returns a dictionary with key/value pairs of each word and the number of
occurrences of that word.

>>> count_occurences([‘a’, ‘b’, ‘a’, ‘a’, ‘c’, ‘c’])

{‘a’ : 3, ‘b’: 1, ‘c’: 2}

25Sunday, January 15, 2012

Exercise 4 Solution
def print_record(rec):

 for (num, name) in rec.items():
 print ‘Name: ’ + name
 print ‘Student #: ’ + num
 print ‘’

def count_occurrences(words):
 result = {}
 for word in words:
 if word in result.keys():
 result[word] = result[word] + 1
 else:
 result[word] = 1
 return result

26

26Sunday, January 15, 2012

While Loops

27

A while loop is used to repeat a sequence of statements as many times as is
necessary as long as a particular condition is True:

count = 1
while count <= 10:
 print count
 count += 1

You can break out of a while loop using the break statement.

count = 1
while True: # this is an infinite loop
 print count
 count += 1
 if count == 10:
 break # and this is how to get out of it

27Sunday, January 15, 2012

Modules

28

Python comes with many modules that provide useful functionality:

>>> import random
>>> random.randint(1,6) # roll a die
5

>>> import math
>>> math.sqrt(8)
2.8284271247461903
>>> math.cos(1)
0.54030230586813977
>>> math.cos(0)
1.0

>>> from datetime import date
>>> date.today()
datetime.date(2012, 1, 7)

28Sunday, January 15, 2012

Exercise 5: Guessing Game

29

Implement a number guessing game:

Guess a number between 0 and 100:
--> 50
Too High.
Guess a number between 0 and 100:
--> 25
Too High.
Guess a number between 0 and 100:
--> 13
Too High.
Guess a number between 0 and 100:
--> 8
Correct.

Optional: set a 5-guess limit.

29Sunday, January 15, 2012

Exercise 5 Solution
import random
Choose a random number.
num = random.randint(0,100)

found = False
while not found:
 print "Guess a number:"
 guess = int(raw_input())
 if guess > num:
 print "Too High."
 elif guess < num:
 print "Too Low."
 else:
 print "Correct."
 found = True
 # or you could try
 # break

30

30Sunday, January 15, 2012

Classes and Objects

31

Classes are used to organize data and provide special operations. We will talk
more about these in CSC148, this is just a primer.

class Person(object):

 def __init__(self, first_name, last_name):

 self.first_name = first_name

 self.last_name = last_name

 def __str__(self):

 return self.first_name + " " + self.last_name

>>> p = Person('Jon', 'Taylor')
>>> p
<person.Person object at 0xb7cf720c>
>>> print p
Jon Taylor

31Sunday, January 15, 2012

Exercise 6: NumberList

32

Write a class that stores a list of integers/floats and provides the following
methods:

sum() - returns the sum of the list

mean() - returns the average of the list as a float

min()/max() - returns the maximum/minimum element

num_uniques() - returns the number of unique elements in the list

Hint: Use the in keyword:

>>> nums = [1, 3, 9, 16]
>>> 3 in nums
True
>>> 7 in nums
False

32Sunday, January 15, 2012

Exercise 6 Solution
class NumberList(object):

 def __init__(self, l):
 self.l = l

 def sum(self):
 cur = 0.0
 for x in self.l:
 cur = cur + x
 return cur

 def mean(self):
 n = len(self.l)
 sum = self.sum()
 return float(sum)/n

33

33Sunday, January 15, 2012

Exercise 6 Solution
...

 def max(self):
 cur = self.l[0]
 for x in self.l:
 if x > cur:
 cur = x
 return cur

 def num_uniques(self):
 count = 0
 for i in range(len(self.l)):
 if not self.l[i] in \
 (self.l[:i] + self.l[i+1:]):
 count = count + 1
 return count

34

34Sunday, January 15, 2012

