
Classes and
Inheritance

Lecture 24, Week 8
March 11, 2011

CSC108H1S
Velian Pandeliev

1

Friday, March 11, 2011

The Database Class

13

We will now write a Database class which can
store a collection of Movies. It should have:
- a list as an instance variable to store Movies
- an __init__ method
- a method called populate which reads comma-
separated entries from a file in the form:
 movie title,YYYY,genre
- a list_library method which returns the list
of movies sorted according to the Movie's
__cmp__ function
- a search method which returns all movies
whose titles match a search string

Friday, March 11, 2011

Sorting By Name

14

def __cmp__(self, other):
 '''Ordered by title'''
 if self.title > other.title:
 return 1
 elif self.title == other.title:
 return 0
 else:
 return -1
This __cmp__ method sorts the Movie objects by
name when we run sort().

Friday, March 11, 2011

Sorting By Year

15

To sort our movies by name, we change the
__cmp__ method as follows:

 def __cmp__(self, oth):
 '''Ordered by year'''
 if self.year > oth.year:
 return 1
 elif self.year == oth.year:
 return 0
 else:
 return -1

Friday, March 11, 2011

Relationships Between Classes

16

As the building blocks of more complex systems,
objects can be designed to interact with each other in
one of three ways:

Association: an object is aware of another object
and holds a reference to it

Composition: objects combining to create more
complex ones

Inheritance: objects are created as extensions of
other objects with additional properties

Friday, March 11, 2011

Association

17

In an associative has-a relationship, an object is
aware of another complex object and can
communicate with it.

Example: a Car has an owner attribute which is a
Person.

Car

owner

Person
name
age
sex

Friday, March 11, 2011

Composition

18

In a compositional has-a relationship, an object is
made up of less complex objects.

Example: a Movie object is composed of string
objects title and genre and integer object year.

Movie
title
genre
year

<str>
<str>
<int>

Friday, March 11, 2011

Inheritance

19

Inheritance, as opposed to the previous two
examples, is not a has-a relationship. It's an is-a
relationship.

It means that objects of a particular class are
members of a subset of the objects of another class.

The subclass inherits all the properties of the
superclass, and adds some of its own.

Inheritance is a largely misunderstood idea, so we will
spend a bit of time clarifying when it is useful and
when it is not.

Friday, March 11, 2011

Inheritance Example

20

Consider the class Person:

class Person():
 def __init__(self,n, y, g):
 self.name = n
 self.year = y
 self.gender = g

Several modules may use this class to keep track of
Person objects.

Now, imagine that the university would like to use the
Person class to store information about its
students.

Friday, March 11, 2011

Inheritance Example

21

The Person class does not have all the attributes
necessary to keep track of a student's personal
information.

What can we do?

We could add what we need to Person, which, if
done by all other methods that may be using
Persons, would make Person a very long, unwieldy
class.

Alternatively, we can create the parts that we're
missing (student number, GPA, etc.) in another class
and connect it to the Person class somehow.

Friday, March 11, 2011

The Student Class

22

We create the class Student:

class Student():
 def __init__(self, stn, avg):
 self.student_number = stn
 self.gpa = avg
Now, this Student class also needs a name, a
gender and a year of birth.

We have three options:

Friday, March 11, 2011

The Student Class - Option A

23

class Student():
 def __init__(self,n,y,g,s,a):
 self.name = n
 self.year = y
 self.gender = g
 self.student_number = s
 self.gpa = a

This option makes all the Person functionality
available in the Student class, but it has a drawback:
if a new attribute needed to be added for all people, it
would have to be added in two places.

Friday, March 11, 2011

The Student Class - Option B

24

class Student():
 def __init__(self,n,a,p):
 self.student_number = n
 self.gpa = a
 self.person = p
This option makes the Student class store a
Person class in self.person. This way, looking
for the Student's name would involve checking its
person attribute's name.
However, this is counter-intuitive as a metaphor since
the student is not a separate entity from the person.
It's not that students HAVE people, students ARE
people.

Friday, March 11, 2011

The Student Class - Option C

25

What if there was a way to express that every
Student was a Person with extra information, that
students were a subset of people?

We specify that Student inherits from Person by
giving person as a parameter to the class definition:

class Student(Person):

This means that the Student class automatically
takes on all the properties of the Person class
before any of its own are even defined.

Friday, March 11, 2011

The Student Class

26

Then, we add what we're missing and pass on
pertinent information to our parent/ancestor/
superclass:

class Student(Person):

 def __init__(self,n,y,g,sn,a):

 Person.__init__(self,n,y,g)

 self.student_number = sn

 self.gpa = a

The bold line initializes the Person-specific parts of
our Student. It uses standard method syntax.

Friday, March 11, 2011

Inheriting Attributes

27

Let's make a new Student:

>>> ramona = Student("Ramona",\
1987, 'F', 990000001, 3.0)

Our student has student-specific attributes:

>>> ramona.gpa
4.0

However, she also has all the attributes a person may
have:

>>> ramona.name
Ramona

Friday, March 11, 2011

Inheriting Methods

28

All the Person's methods are now Student
methods as well, so if Person had a __str__:

def __str__(self):

 return "%s (%s) b. %s" %\
(self.name, self.gender, self.year)

Even though we haven't specifically defined a
__str__ method in Student, we have one:

>>> print ramona
Ramona (F) b. 1987

Friday, March 11, 2011

Overriding Methods

29

It's natural that a Student's string representation
would be different from a Person's. So, if we wrote a
__str__ method for Student:

def __str__(self):

 return "Student %s (%s)" %\
(self.name, self.student_number)

This method would override (be called instead of)
any method of the same name for its ancestor:

>>> print ramona
Student Ramona (990000001)

Friday, March 11, 2011

Overriding Methods

30

When overriding, we can still rely on the parent's
method to do part of the work:

def __str__(self):

 return "Student " + \
 Person.__str__(self)

Then, the Person __str__ method would help
build the result of the Student __str__ method.

>>> print ramona
Student Ramona (F) b. 1987

Friday, March 11, 2011

Extending Functionality

31

We will want to do things with Students that don't
apply to all Persons. So, by writing methods in the
Student class itself, we can extend functionality
without affecting Person:

def raise_gpa(self, bonus):
 self.gpa += bonus

>>> ramona.raise_gpa(0.5)
>>> ramona.gpa
3.5
>>> velian = Person("Velian",
 1986,'M')
>>> velian.raise_gpa(0.5) <-- ERROR

Friday, March 11, 2011

Inheritance: Conclusion

32

Inheritance is one of the most powerful concepts in
object-oriented programming, but it's also one of the
most abused.

When we say that class B inherits from class A, we are
making a very specific claim about the relationships
between these two objects:

We are claiming that the objects in class B are a
subset of the objects of class A, and have all their
properties and more.

Cars are objects. People own cars. Why don't we let
Person inherit from Car to represent people who
own cars?........

Friday, March 11, 2011

33

I wouldn't.

Friday, March 11, 2011

